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Abstract
Two periodic fields acting on a bistable oscillator are assumed to have different
timescales, which allows the exclusion of one of these fields via the separation
of timescales. The second field is taken into account by harmonic linearization,
which finally leads to a linear equation. Dynamic stabilization of the unstable
point and a vibrational resonance follow from simple calculations.

PACS numbers: 0540, 0250

Landa and McClintock [1] recently performed a numerical analysis of a bistable oscillator
subject to two periodic fields and found a phenomenon similar to stochastic resonance, which
they called vibrational resonance. The purpose of this Letter is to give a simple analytical
treatment of this and some related phenomena. We consider the bistable oscillator, which is
described by the following equation:

d2x

dt2
+ α

dx

dt
− ω2

0 x + β x3 = A sin (ωt) + C sin (
t) . (1)

Let us suppose that one of the fields has an amplitude larger than the barrier height, C >
ω2

0
4β

,
and high frequency, 
 � ω. The former means that this field during each half-period transfers
the system from one potential well to the other. A similar situation holds in a random system
where the large-amplitude field is replaced by a random force, which plays the same role
of switching a system between two minima. Therefore, by choosing an appropriate relation
between the input signal A sin (ωt) and the amplitude C of the large signal (or the strength of
the noise) one can obtain a non-monotonic dependence of the output signal on the amplitude
C (vibrational resonance [1]) or on the noise strength (stochastic resonance [2]).

Consider first the case A = 0. We look for the solution of equation (1) in the form

x (t) = y (t) − C sin (
t)


2
. (2)

The first term on the right-hand side will be assumed to vary significantly only over times
of the order of t , while the second term varies rapidly. Substituting (2) into (1) with A = 0,
one can perform an averaging over a single cycle time of sin (
t). All odd powers of sin (
t)
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vanish under the average while the sin2 (
t) term will give 1
2 . Finally, one obtains the following

equation for X (t), the mean value of y (t) during the oscillation period, X (t) = 〈y (t)〉:
d2X

dt2
+ α

dX

dt
−

(
ω2

0 − 3βC2

2
4

)
X + βX3 = 0. (3)

For 3βC2

2
4 � ω2
0 the phenomenon of dynamic stabilization [3] occurs, namely the high-

frequency external field transforms the previously unstable position X = 0 into a stable one.
This phenomenon has been found numerically for the pendulum [4], and by an electronic
analogue experiment for the Duffing oscillator [3]. Notice that in contrast to the well
known phenomenon of a stabilization of the reverse pendulum by high-frequency parametric
oscillations [5], here the high-frequency oscillations enter the equation of motion additively
and not multiplicatively.

Returning to equation (1) with A �= 0, we notice that the slowly varying term A sin (ωt)

does not change under the averaging over the short time, and equation (1) can now be rewritten
as

d2X

dt2
+ α

dX

dt
−

(
ω2

0 − 3βC2

2
4

)
X + βX3 = A sin (ωt) . (4)

One can say that equation (4) is the ‘coarse-grained’ (with respect to time) version of
equation (1).

In order to solve equation (4) one needs some additional assumptions, which could be
weak, fast or slow driving [6]. We restrict ourselves to the simplest treatment of a resonance
in a nonlinear oscillator [5], used, in particular, for random and periodic forces [7]. The
approximate solution of equation (4) can be written as

X (t) ≈ � sin (ωt − θ) . (5)

Retaining only the first term in a Fourier series of the nonlinear term in equation (4) and
averaging it over the period 2π

ω
of the external field, one can replace the βX3 term by 3β�2

4 X.
Then equation (4) reduces to

d2X

dt2
+ α

dX

dt
+ � 2X = A sin (ωt) (6)

with the renormalized frequency

� =
(

3β�2

4
+

3βC2

2
4
− ω2

0

)1
2

. (7)

Equation (4) is identically satisfied by (5) if

αω� = A sin θ
3β�3

4
−

(
ω2

0 − 3βC2

2
4
+ ω2

)
� = A cos θ. (8)

Excluding � from equations (7) and (8), one obtains

� 2 = 3βC2

2
4
− ω2

0 +
3βA2

4
[
α2ω2 +

(
� 2 − ω2

)2] . (9)

A resonance in the linear equation (6) occurs when ω = � . Substituting the latter in
equation (9), one can find the relation between the amplitudes and frequencies of the two
driving fields in equation (1) which produce the resonant behaviour. This condition has the
form

ω2 = 3βC2

2
4
+

3βA2

4α2ω2
− ω2

0 (10)
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and is of course model dependent. According to our model, two periodic forces acting on a
bistable nonlinear oscillator transfer it into a single-well linear oscillator, and equation (10)
determines the condition of the dynamic stabilization of the previously unstable point x = 0.

In conclusion, we have shown that an additional periodic field is able not only to control
chaos in nonlinear systems [8], but also to have control over the shift of the resonance frequency
(equation (10)), which is desirable in systems of practical importance such as electronic devices
or lasers.
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